Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.501
Filtrar
1.
J Inflamm Res ; 17: 2173-2193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617383

RESUMO

The pathogenesis of severe acute pancreatitis-associated acute lung injury (SAP-ALI), which is the leading cause of mortality among hospitalized patients in the intensive care unit, remains incompletely elucidated. The intestinal mucosal immune barrier is a crucial component of the intestinal epithelial barrier, and its aberrant activation contributes to the induction of sustained pro-inflammatory immune responses, paradoxical intercellular communication, and bacterial translocation. In this review, we firstly provide a comprehensive overview of the composition of the intestinal mucosal immune barrier and its pivotal roles in the pathogenesis of SAP-ALI. Secondly, the mechanisms of its crosstalk with gut microbiota, which is called gut-lung axis, and its effect on SAP-ALI were summarized. Finally, a number of drugs that could enhance the intestinal mucosal immune barrier and exhibit potential anti-SAP-ALI activities were presented, including probiotics, glutamine, enteral nutrition, and traditional Chinese medicine (TCM). The aim is to offer a theoretical framework based on the perspective of the intestinal mucosal immune barrier to protect against SAP-ALI.

2.
MedComm (2020) ; 5(4): e531, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617435

RESUMO

Pyrogallol, a natural polyphenol compound (1,2,3-trihydroxybenzene), has shown efficacy in the therapeutic treatment of disorders associated with inflammation. Nevertheless, the mechanisms underlying the protective properties of pyrogallol against influenza A virus infection are not yet established. We established in this study that pyrogallol effectively alleviated H1N1 influenza A virus-induced lung injury and reduced mortality. Treatment with pyrogallol was found to promote the expression and nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Notably, the activation of Nrf2 by pyrogallol was involved in elevating the expression of PPAR-γ, both of which act synergistically to enhance heme oxygenase-1 (HO-1) synthesis. Blocking HO-1 by zinc protoporphyrin (ZnPP) reduced the suppressive impact of pyrogallol on H1N1 virus-mediated aberrant retinoic acid-inducible gene-I-nuclear factor kappa B (RIG-I-NF-κB) signaling, which thus abolished the dampening effects of pyrogallol on excessive proinflammatory mediators and cell death (including apoptosis, necrosis, and ferroptosis). Furthermore, the HO-1-independent inactivation of janus kinase 1/signal transducers and activators of transcription (JAK1/STATs) and the HO-1-dependent RIG-I-augmented STAT1/2 activation were both abrogated by pyrogallol, resulting in suppression of the enhanced transcriptional activity of interferon-stimulated gene factor 3 (ISGF3) complexes, thus prominently inhibiting the amplification of the H1N1 virus-induced proinflammatory reaction and apoptosis in interferon-beta (IFN-ß)-sensitized cells. The study provides evidence that pyrogallol alleviates excessive proinflammatory responses and abnormal cell death via HO-1 induction, suggesting it could be a potential agent for treating influenza.

3.
Toxicol Res (Camb) ; 13(2): tfae041, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617713

RESUMO

Aim: To explore the effect of Dexmedetomidine (DEX) on lung injury in patients undergoing One-lung ventilation (OLV). Methods: Esophageal cancer patients undergoing general anesthesia with OLV were randomly divided into the DEX group and control group, with 30 cases in each group. Mean arterial pressure (MAP), heart rate (HR), arterial partial pressure of oxygen (PO2), and arterial partial pressure of nitrogen dioxide (PCO2) were recorded at the time points after anesthesia induction and before OLV (T1), OLV 30 min (T2), OLV 60 min (T3), OLV 120 min (T4), OLV end before (T5) and before leaving the room (T6) in both groups. Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) was applied to detect the levels of CC16 mRNA. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum CC16 protein levels. The content of malondialdehyde (MDA) in serum was determined by thio barbituric acid (TBA) method. ELISA was used to measure the concentrations of TNF-α (tumor necrosis factor-alpha)/and IL-6 (interleukin 6). Results: DEX treatment slowed down HR at time points T1-T6 and increased PO2 and PCO2 at time points T2-T5 compared with the control group. Moreover, at time points T2-T6, DEX treatment reduced the levels of club cell secretory protein-16 (CC16) mRNA and serum CC16 protein levels. Furthermore, DEX treatment caused the reduction of MDA, TNF-α and IL-6 concentrations in serum of patients. Conclusion: During the OLV process, DEX could reduce serum CC16 protein levels, inhibit inflammatory reactions and oxidative stress, and improve oxygenation index, indicating a protective effect on lung injury during OLV.

4.
J Thorac Dis ; 16(3): 2082-2101, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38617778

RESUMO

Background: Acute lung injury (ALI) caused by hypobaric hypoxia (HH) is frequently observed in high-altitude areas, and it is one of the leading causes of death in high-altitude-related diseases due to its rapid onset and progression. However, the pathogenesis of HH-related ALI (HHALI) remains unclear, and effective treatment approaches are currently lacking. Methods: A new mouse model of HHALI developed by our laboratory was used as the study subject (Chinese patent No. ZL 2021 1 1517241 X). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the messenger RNA (mRNA) expression levels of PDZ-binding kinase (PBK), sirtuin 1 (SIRT1), and PTEN-induced kinase 1 (PINK1) in mouse lung tissue. Hematoxylin and eosin staining was used to observe the main types of damage and damaged cells in lung tissue, and the lung injury score was used for quantification. The wet-dry (W/D) ratio was used to measure lung water content. Enzyme-linked immunosorbent assay was used to detect changes in inflammatory factors and oxidative stress markers in the lungs. Western blotting verified the expression of various mitochondrial autophagy-related proteins. The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazoylcarbocyanine iodide (JC-1) method was used determined the health status of mitochondria based on changes in mitochondrial membrane potential. Transmission electron microscopy was used to directly observe the morphology of mitochondria. Multicolor immunofluorescence was used to observe the levels of mitochondrial autophagy markers. Other signaling pathways and molecular mechanisms that may play a role in epithelial cells were analyzed via through RNA sequencing. Results: Low pressure and hypoxia caused pathological changes in mouse lung tissue, mainly ALI, leading to increased levels of inflammatory factors and intensified oxidative stress response in the lungs. Overexpression of PBK was found to alleviate HHALI, and activation of the p53 protein was shown to abrogate this therapeutic effect, while activation of SIRT1 protein reactivated this therapeutic effect. The therapeutic effect of PBK on HHALI is achieved via the activation of mitochondrial autophagy. Finally, RNA sequencing demonstrated that besides mitochondrial autophagy, PBK also exerts other functions in HHALI. Conclusions: Overexpression of PBK inhibits the expression of p53 and activates SIRT1-PINK1 axis mediated mitochondrial autophagy to alleviate HHALI.

5.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612576

RESUMO

In a recent stereotactic body radiation therapy animal model, radiation pneumonitis and radiation pulmonary fibrosis were observed at around 2 and 6 weeks, respectively. However, the molecular signature of this model remains unclear. This study aimed to examine the molecular characteristics at these two stages using RNA-seq analysis. Transcriptomic profiling revealed distinct transcriptional patterns for each stage. Inflammatory response and immune cell activation were involved in both stages. Cell cycle processes and response to type II interferons were observed during the inflammation stage. Extracellular matrix organization and immunoglobulin production were noted during the fibrosis stage. To investigate the impact of a 10 Gy difference on fibrosis progression, doses of 45, 55, and 65 Gy were tested. A dose of 65 Gy was selected and compared with 75 Gy. The 65 Gy dose induced inflammation and fibrosis as well as the 75 Gy dose, but with reduced lung damage, fewer inflammatory cells, and decreased collagen deposition, particularly during the inflammation stage. Transcriptomic analysis revealed significant overlap, but differences were observed and clarified in Gene Ontology and KEGG pathway analysis, potentially influenced by changes in interferon-gamma-mediated lipid metabolism. This suggests the suitability of 65 Gy for future preclinical basic and pharmaceutical research connected with radiation-induced lung injury.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Lesões por Radiação , Animais , Lesão Pulmonar/genética , Fibrose Pulmonar/genética , Inflamação , Interferon gama/genética , Pulmão , Doses de Radiação
6.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612759

RESUMO

As a regulator of alveolo-capillary barrier integrity, Transient Receptor Potential Vanilloid 4 (TRPV4) antagonism represents a promising strategy for reducing pulmonary edema secondary to chemical inhalation. In an experimental model of acute lung injury induced by exposure of anesthetized swine to chlorine gas by mechanical ventilation, the dose-dependent effects of TRPV4 inhibitor GSK2798745 were evaluated. Pulmonary function and oxygenation were measured hourly; airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, and histopathology were assessed 24 h post-exposure. Exposure to 240 parts per million (ppm) chlorine gas for ≥50 min resulted in acute lung injury characterized by sustained changes in the ratio of partial pressure of oxygen in arterial blood to the fraction of inspiratory oxygen concentration (PaO2/FiO2), oxygenation index, peak inspiratory pressure, dynamic lung compliance, and respiratory system resistance over 24 h. Chlorine exposure also heightened airway response to methacholine and increased wet-to-dry lung weight ratios at 24 h. Following 55-min chlorine gas exposure, GSK2798745 marginally improved PaO2/FiO2, but did not impact lung function, airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, or histopathology. In summary, in this swine model of chlorine gas-induced acute lung injury, GSK2798745 did not demonstrate a clinically relevant improvement of key disease endpoints.


Assuntos
Lesão Pulmonar Aguda , Antineoplásicos , Benzimidazóis , Compostos de Espiro , Animais , Suínos , Cloro/toxicidade , Canais de Cátion TRPV , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação , Oxigênio
7.
J Agric Food Chem ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619332

RESUMO

The present work was conducted to research the potential mechanism of palmatine (PAL) on lipopolysaccharide (LPS)-caused acute lung injury (ALI). Network pharmacology and bioinformatic analyses were carried out. Mice were intragastrically treated with PAL and intratracheally stimulated with LPS. LPS-induced RAW264.7 cells were employed for the in vitro model. The MPO activity, W/D ratio, neutrophils, total cell number in BALF, and histopathological alteration were examined. The levels of TNF-α, IL-1ß, IL-6, IL-18, IL-4, and IL-10 in serum, BALF, and supernatant were examined by ELISA. The mRNA expressions of iNOS, CD68, Arg1, Ym1, and CD206 and protein expressions of NAMPT, TLR2, CCR1, and NLRP3 inflammasome were detected by PCR, WB, and immunofluorescence. The NAMPT inhibitor FK866, TLR2 inhibitor C29, CCR1 inhibitor BX471, NAMPT-overexpression (OE) plasmid, and TLR2-OE plasmid were used for mechanism research. As a result, PAL relieved the symptoms of ALI. PAL inhibited M1 phenotype indices and promoted M2 phenotype indices in both LPS-induced mice and RAW264.7 cells. PAL also inhibited the expressions of NAMPT, TLR2, CCR1, and NLRP3 inflammasome. The treatments with FK866, NAMPT-OE plasmid, C29, TLR2-OE plasmid, and BX471 proved that PAL exerted its effect via NAMPT/TLR2/CCR1. Molecular docking suggested that PAL might combine with NAMPT. In conclusion, PAL ameliorated LPS-induced ALI by inhibiting M1 phenotype macrophage polarization via NAMPT/TLR2/CCR1 signaling.

8.
Exp Lung Res ; 50(1): 96-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625585

RESUMO

Background: Acute Respiratory Distress syndrome (ARDS) is a clinical syndrome of noncardiac pulmonary edema and inflammation leading to acute respiratory failure. We used the oleic acid infusion pig model of ARDS resembling human disease to explore cytokine changes in white blood cells (WBC) and plasma proteins, comparing baseline to ARDS values. Methods: Nineteen juvenile female swine were included in the study. ARDS defined by a PaO2/FiO2 ratio < 300 was induced by continuous oleic acid infusion. Arterial blood was drawn before and during oleic acid infusion, and when ARDS was established. Cytokine expression in WBC was analyzed by RT-qPCR and plasma protein expression by ELISA. Results: The median concentration of IFN-γ mRNA was estimated to be 59% (p = 0.006) and of IL-6 to be 44.4% (p = 0.003) of the baseline amount. No significant changes were detected for TNF-α, IL-17, and IL-10 mRNA expression. In contrast, the concentrations of plasma IFN-γ and IL-6 were significantly higher (p = 0.004 and p = 0.048 resp.), and TNF-α was significantly lower (p = 0.006) at ARDS compared to baseline. Conclusions: The change of proinflammatory cytokines IFN-γ and IL-6 expression is different comparing mRNA and plasma proteins at oleic acid-induced ARDS compared to baseline. The migration of cells to the lung may be the cause for this discrepancy.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Humanos , Feminino , Animais , Suínos , Ácido Oleico , Fator de Necrose Tumoral alfa , Interleucina-6 , Citocinas , Lesão Pulmonar Aguda/induzido quimicamente , Síndrome do Desconforto Respiratório/induzido quimicamente
9.
Biochim Biophys Acta Gen Subj ; : 130612, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38626830

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by rapid onset and widespread inflammation in the lungs, often leading to respiratory failure. These conditions can be triggered by various factors, resulting in a severe inflammatory response within the lungs. Resveratrol, a polyphenolic compound found in grapes and peanuts, is renowned for its potent antioxidative and anti-inflammatory properties. In this study, we investigated how resveratrol protects against lipopolysaccharide (LPS)-induced ALI in mice. We established mouse models of LPS-induced ALI and inflammation in bronchoalveolar lavage fluid (BALF) macrophages. Through histopathological examination, immunofluorescence, western blot, enzyme-linked immunosorbent assay (ELISA), and transmission electron microscopy (TEM), we assessed the impact of resveratrol on the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasomes and the process of mitophagy. Our findings indicate that resveratrol significantly mitigated the lung injury and inflammation caused by LPS. This was achieved by inhibiting the oligomerization of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and the activation of NLRP3 inflammasomes. Resveratrol also reduced the levels of IL-1ß and IL-18 in serum and BALF, decreased caspase-1 expression, and diminished macrophage pyroptosis. Furthermore, it upregulated Pink1, Parkin, Beclin-1, Autophagy-Related 5 (Atg5), and Microtubule-Associated Proteins 1 A/1B Light Chain 3B (LC3B-II), thereby enhancing mitophagy. Conversely, mitophagy was inhibited by Pink1 siRNA. In conclusion, resveratrol ameliorated ALI in mice, potentially by inhibiting the activation of NLRP3 inflammasomes, activating the Pink1/Parkin pathway, and promoting mitophagy.

10.
Ther Adv Respir Dis ; 18: 17534666241244974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616385

RESUMO

Nanoparticles have attracted extensive attention due to their high degree of cell targeting, biocompatibility, controllable biological activity, and outstanding pharmacokinetics. Changing the size, morphology, and surface chemical groups of nanoparticles can increase the biological distribution of agents to achieve precise tissue targeting and optimize therapeutic effects. Examples of their use include nanoparticles designed for increasing antigen-specific immune responses, developing vaccines, and treating inflammatory diseases. Nanoparticles show the potential to become a new generation of therapeutic agents for regulating inflammation. Recently, many nanomaterials with targeted properties have been developed to treat acute lung injury/acute respiratory distress syndrome (ALI/ARDS). In this review, we provide a brief explanation of the pathological mechanism underlying ALI/ARDS and a systematic overview of the latest technology and research progress in nanomedicine treatments of ALI, including improved nanocarriers, nanozymes, and nanovaccines for the targeted treatment of lung injury. Ultimately, these nanomedicines will be used for the clinical treatment of ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Humanos , Nanomedicina , Lesão Pulmonar Aguda/tratamento farmacológico , Movimento Celular , Inflamação , Síndrome do Desconforto Respiratório/tratamento farmacológico
11.
Int J Biol Macromol ; 267(Pt 1): 131153, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574930

RESUMO

The COVID-19 pandemic has drawn attention to acute lung injury and respiratory distress syndrome as major causes of death, underscoring the urgent need for effective treatments. Protease enzymes possess a wide range of beneficial effects, including antioxidant, anti-inflammatory, antifibrotic, and fibrinolytic effects. This study aimed to evaluate the potential therapeutic effects of bacterial protease and chymotrypsin in rats in mitigating acute lung injury induced by lipopolysaccharide. Molecular docking was employed to investigate the inhibitory effect of bacterial protease and chymotrypsin on TLR-4, the receptor for lipopolysaccharide. Bacterial protease restored TLR-4, Nrf2, p38 MAPK, NF-kB, and IKK-ß levels to normal levels, while chymotrypsin normalized TLR-4, IKK-ß, IL-6, and IL-17 levels. The expression of TGF-ß, caspase-3, and VEGF in the bacterial protease- and chymotrypsin-treated groups was markedly reduced. Our results suggest that both therapies ameliorate LPS-induced acute lung injury and modulate the TLR4/Nrf2/NF-k signaling pathway. Each protease exhibited distinct mechanisms, with bacterial protease showing a better response to oxidative stress, edema, and fibrosis, whereas chymotrypsin provided a better response in the acute phase and innate immunity. These findings highlight the potential of each protease as a promising therapeutic option for acute lung injury and respiratory distress syndrome.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38574238

RESUMO

Acute lung injury is a common respiratory disease characterized by diffuse alveolar injury and interstitial edema, as well as a hyperinflammatory response, lung cell damage and oxidative stress. Foxq1, a member of the FOX family of transcription factors, is expressed in various tissues, such as the lungs, liver, and kidneys, and contributes to various biological processes, such as stress, metabolism, cell cycle arrest, and aging-related apoptosis. However, the role of Foxq1 in acute lung injury is unknown. We constructed ex vivo and in vivo acute lung injury models by lipopolysaccharide tracheal perfusion of ICR mice and conditioned medium stimulation of injured MLE-12 cells. Foxq1 expression was increased, and its localization was altered in our acute lung injury model. In normal or injured MLE-12 cells, knockdown of Foxq1 promoted cell survival, and overexpression had the opposite effect. This regulatory effect was likely mediated by Tle1 and the NFκB/Bcl2/Bax signaling pathway. These data suggest a potential link between Foxq1 and acute lung injury, indicating that Foxq1 can be used as a biomarker for the diagnosis of acute lung injury. Targeted inhibition of Foxq1 expression could promote alveolar epithelial cell survival and may provide a strategy for mitigating acute lung injury.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38574279

RESUMO

Immune activation is essential for lung control of viral and bacterial infection, but an overwhelming inflammatory response often leads to the onset of acute respiratory distress syndrome (ARDS). Interleukin-10 (IL-10) plays a crucial role in regulating the balance between antimicrobial immunity and immunopathology. In the current study, we have investigated the role of IL-10 in acute lung injury (ALI) induced by influenza A virus (IAV) and methicillin-resistant Staphylococcus aureus (MRSA) coinfection. This unique coinfection model resembles acute pneumonia patients undergoing appropriate antibiotic therapies. Using global IL-10 and IL-10 receptor (IL-10R) gene-deficient mice, as well as in vivo neutralizing antibodies, here we show that IL-10 deficiency promotes IFN-γ-dominant cytokine responses and triggers acute animal death. Interestingly, this extreme susceptibility is fully preventable by IFN-γ neutralization during coinfection. Further studies using mice with Il10ra deletion in selective myeloid subsets reveal that IL-10 primarily acts on mononuclear phagocytes to prevent IFN-γ/TNF-α hyper-production and acute mortality. Importantly, this anti-inflammatory IL-10 signaling is independent of its inhibitory effect on antiviral and antibacterial defense. Collectively, our results demonstrate a key mechanism of IL-10 in preventing hypercytokinemia and ARDS pathogenesis by counteracting the IFN-γ response.

15.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 484-490, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597439

RESUMO

OBJECTIVE: To evaluate the effect of esketamine combined with distal limb ischemic preconditioning (LIP) for lung protection in elderly patients undergoing thoracoscopic radical surgery for lung cancer. METHODS: This randomized trial was conducted in 160 patients undergoing elective thoracoscopic surgery for lung cancer, who were randomized into control group (with saline injection and sham LIP), esketamine group, LIP group, and esketamine + LIP group (n=40). Before anesthesia induction, according to the grouping, the patients received an intravenous injection with 0.5 mg/kg esketamine or 10 ml saline (in control group). LIP was induced by applying a tourniquet 1-2 cm above the popliteal fossa in the left lower limb to block the blood flow for 5 min for 3 times at the interval of 5 min, and sham LIP was performed by applying the tourniquet without pressurization for 30 min. Oxygenation index (OI) and alveolar-arterial PO2 difference (A-aDO2) were calculated before induction (T0), at 30 min (T0.5) and 1 h (T1) of one-lung ventilation (OLV), and at 1 h after two-lung ventilation (T3). Serum levels of SP-D, CC-16 and TNF-α were measured by ELISA at T0, T1, T2 (2 h of OLV), T3, and 24 h after the operation (T4). The length of hospital stay and postoperative pulmonary complications of the patients were recorded. RESULTS: Compared with those in the control group, the patients in the other 3 groups had significantly lower CC-16, SP-D and TNF-α levels, shorter hospital stay, and lower incidences of lung infection and lung atelectasis (all P < 0.05). Serum CC-16, SP-D and TNF-α levels, hospital stay, incidences of complications were significantly lower or shorter in the combined treatment group than in esketamine group and LIP group (all P < 0.05). CONCLUSION: In elderly patients undergoing thoracoscopic radical surgery for lung cancer, treatment with esketamine combined with LIP can alleviate acute lung injury by enhancing anti-inflammatory response to shorten postoperative hospital stay, reduce lung complications and promote the patients' recovery.


Assuntos
Precondicionamento Isquêmico , Ketamina , Neoplasias Pulmonares , Ventilação Monopulmonar , Humanos , Idoso , Neoplasias Pulmonares/cirurgia , Fator de Necrose Tumoral alfa , Proteína D Associada a Surfactante Pulmonar , Pulmão , Toracoscopia , Complicações Pós-Operatórias/prevenção & controle
16.
Inflammation ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598115

RESUMO

Particulate matter (PM) induces and enhances oxidative stress and inflammation, leading to a variety of respiratory diseases, including acute lung injury. Exploring new treatments for PM-induced lung injury has long been of interest to researchers. Palmatine (PAL) is a natural extract derived from plants that has been reported in many studies to alleviate inflammatory diseases. Our study was designed to explore whether PAL can alleviate acute lung injury caused by PM. The acute lung injury model was established by instilling PM (4 mg/kg) into the airway of mice, and PAL (50 mg/kg and 100 m/kg) was administrated orally as the treatment groups. The effect and mechanism of PAL treatment were examined by immunofluorescence, immunohistochemistry, Western Blotting, ELISA, and other experiments. The results showed that oral administration of PAL (50 mg/kg and 100 m/kg) could significantly alleviate lung inflammation and acute lung injury caused by PM. In terms of mechanism, we found that PAL (50 mg/kg) exerts anti-inflammatory and anti-damage effects mainly by enhancing the activation of the Nrf2-related antioxidant pathway and inhibiting the activation of the NLRP3-related pyroptosis pathway in mice. These mechanisms have also been verified in our cell experiments. Further cell experiments showed that PAL may reduce intracellular reactive oxygen species (ROS) by activating Nrf2-related pathways, thereby inhibiting the activation of NLRP3-related pyroptosis pathway induced by PM in Beas-2B cell. Our study suggests that PAL can be a new option for PM-induced acute lung injury.

17.
Acta Pharmacol Sin ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589686

RESUMO

Cardiopulmonary progenitor cells (CPPs) constitute a minor subpopulation of cells that are commonly associated with heart and lung morphogenesis during embryonic development but completely subside after birth. This fact offers the possibility for the treatment of pulmonary heart disease (PHD), in which the lung and heart are both damaged. A reliable source of CPPs is urgently needed. In this study, we reprogrammed human cardiac fibroblasts (HCFs) into CPP-like cells (or induced CPPs, iCPPs) and evaluated the therapeutic potential of iCPP-derived exosomes for acute lung injury (ALI). iCPPs were created in passage 3 primary HCFs by overexpressing GLI1, WNT2, ISL1 and TBX5 (GWIT). Exosomes were isolated from the culture medium of passage 6-8 GWIT-iCPPs. A mouse ALI model was established by intratracheal instillation of LPS. Four hours after LPS instillation, ALI mice were treated with GWIT-iCPP-derived exosomes (5 × 109, 5 × 1010 particles/mL) via intratracheal instillation. We showed that GWIT-iCPPs could differentiate into cell lineages, such as cardiomyocyte-like cells, endothelial cells, smooth muscle cells and alveolar epithelial cells, in vitro. Transcription analysis revealed that GWIT-iCPPs have potential for heart and lung development. Intratracheal instillation of iCPP-derived exosomes dose-dependently alleviated LPS-induced ALI in mice by attenuating lung inflammation, promoting endothelial function and restoring capillary endothelial cells and the epithelial cells barrier. This study provides a potential new method for the prevention and treatment of cardiopulmonary injury, especially lung injury, and provides a new cell model for drug screening.

18.
J Ethnopharmacol ; 329: 118162, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38588989

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Exocarpium Citri Grandis (ECG), the epicarp of C. grandis 'Tomentosa' which is also known as Hua-Ju-Hong in China, has been widely used for thousands of years to treat inflammatory lung disorders such as asthma, and cough as well as dispelling phlegm. However, its underlying pharmacological mechanisms in acute lung injury (ALI) remain unclear. AIM OF THE STUDY: To explore the therapeutic effect of ECG on ALI and reveal the potential mechanisms based on experimental techniques in vivo and in vitro. MATERIALS AND METHODS: Lipopolysaccharides (LPS) induced ALI in mice and induced RAW 264.7 cell inflammatory model were established to investigate the pharmacodynamics of ECG. ELISA kits, commercial kits, Western Blot, qPCR, Hematoxylin and Eosin (H&E) staining, immunohistochemistry, and immunofluorescence technologies were used to evaluate the pharmacological mechanisms of ECG in ameliorating ALI. RESULTS: ECG significantly attenuated pulmonary edema in LPS-stimulated mice and decreased the levels of IL1ß, IL6, and TNF-α in serum and BALF, reduced MDA and iron concentration as well as increased SOD and GSH levels in lung tissues, and also decreased the ROS level in BALF and Lung tissue. Further pharmacological mechanism studies showed that ECG significantly inhibited mRNA expression of inflammatory signaling factors and chemokines, and down-regulated the expression of TLR4, MyD88, NF-κB p65, NF-κB p-p65 (S536), COX2, iNOS, Txnip, NLRP3, ASC, Caspase-1, JAK1, p-JAK1 (Y1022), JAK2, STAT1, p-STAT1 (S727), STAT3, p-STAT3 (Y705), STAT4, p-STAT4 (Y693), and Keap1, and also up-regulated the expression of Trx-1, Nrf2, HO-1, NQO1, GPX4, PCBP1, and SLC40A1. In the LPS-induced RAW264.7 cell inflammatory model, ECG showed similar results to animal experiments. CONCLUSIONS: Our results showed that ECG alleviated ALI by inhibiting TLR4/MyD88/NF-κB p65 and JAK/STAT signaling pathway-mediated inflammatory response, Txnip/NLRP3 signaling pathway-mediated inflammasome activation, and regulating Nrf2/GPX4 axis-mediated ferroptosis. Our findings provide an experimental basis for the application of ECG.

19.
J Clin Med ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38592032

RESUMO

Background: Sepsis is a major cause of ICU admissions, with high mortality and morbidity. The lungs are particularly vulnerable to infection and injury, and restoration of vascular endothelial homeostasis after injury is a crucial determinant of outcome. Neutrophil extracellular trap (NET) release strongly correlates with the severity of lung tissue damage. However, little is known about whether NETs affect endothelial cell (EC) regeneration and repair. Methods: Eight- to ten-week-old male C57BL/6 mice were injected intraperitoneally with a sublethal dose of LPS to induce acute lung inflammatory injury or with PBS as a control. Blood samples and lung tissues were collected to detect NET formation and lung endothelial cell proliferation. Human umbilical vein endothelial cells (HUVECs) were used to determine the role of NETs in cell cycle progression in vitro. Results: Increased NET formation and impaired endothelial cell proliferation were observed in mice with inflammatory lung injury following septic endotoxemia. Degradation of NETs with DNase I attenuated lung inflammation and facilitated endothelial regeneration. Mechanistically, NETs induced p21 upregulation and cell cycle stasis to impair endothelial repair. Conclusions: Our findings suggest that NET formation impairs endothelial regeneration and vascular repair through the induction of p21 and cell cycle arrest during inflammatory lung injury.

20.
J Ethnopharmacol ; 329: 118155, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593962

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A drug pair is a fundamental aspect of traditional Chinese medicine prescriptions. Scutellaria baicalensis Georgi and Coptis chinensis Franch, commonly used as an herb couple (SBCC), are representative heat-clearing and dampness-drying drugs. They possess functions such as clearing heat, drying dampness, purging fire, and detoxifying. These herbs are used in both traditional and modern medicine for treating inflammation. AIM OF THE STUDY: This study investigated the effects of SBCC on cytokine storm syndrome (CSS) and explored its potential regulatory mechanism. MATERIALS AND METHODS: We assessed the impact of SBCC in a sepsis-induced acute lung injury mouse model by administering an intraperitoneal injection of LPS (15 mg/kg). The cytokine levels in the serum and lungs, the wet-to-dry ratio of the lungs, and lung histopathological changes were evaluated. The macrophages in the lung tissue were examined through transmission electron microscopy. Western blot was used to measure the levels of the CD39/NLRP3/GSDMD pathway-related proteins. Immunofluorescence imaging was used to assess the activation of pro-caspase-1 and ASC and their interaction. AMP-Glo™ assay was used to screen for active ingredients in SBCC targeting CD39. One of the ingredients was selected, and its effect on cell viability was assessed. We induced inflammation in macrophages using LPS + ATP and detected the levels of proinflammatory factors. The images of cell membrane large pores were captured using scanning electron microscopy, the interaction between NLRP3 and ASC was detected using immunofluorescence imaging, and the levels of CD39/NLRP3/GSDMD pathway-related proteins were assessed using Western blot. RESULTS: SBCC administration effectively mitigated LPS-induced cytokine storm, pulmonary edema and lung injury. Furthermore, it repressed the programmed death of lung tissue macrophages by inhibiting the NLRP3/GSDMD pyroptosis pathway and regulating the CD39 purinergic pathway. Based on the results of the AMP-Glo™ assay, we selected wogonoside for further valuation. Wogonoside alleviated LPS + ATP-induced inflammatory damage by regulating the inhibiting the NLRP3/GSDMD pyroptosis pathway and regulating the CD39 purinergic pathway. However, its effect on NLRP3 is not mediated though CD39. CONCLUSION: SBCC and its active small-molecule ingredient, wogonoside, improved CSS by regulating the NLRP3/GSDMD pyroptosis pathway and its upstream CD39 purinergic pathway. It is essential to note that the regulatory effect of wogonoside on NLRP3 is not mediated by CD39.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...